Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy.
نویسندگان
چکیده
Mutations in BRAF are present in the majority of patients with melanoma, rendering these tumors sensitive to targeted therapy with BRAF and MEK inhibitors. Unfortunately, resistance almost invariably develops. Recently, a phenomenon called "phenotype switching" has been identified as an escape route. By switching from a proliferative to an invasive state, melanoma cells can acquire resistance to these targeted therapeutics. Interestingly, phenotype switching bears a striking resemblance to the epithelial-to-mesenchymal-like transition that has been described to occur in cancer stem cells in other tumor types. We propose that these changes are manifestations of one and the same underlying feature, namely a dynamic and reversible phenotypic tumor cell plasticity that renders a proportion of cells both more invasive and resistant to therapy. At the same time, the specific characteristics of these tumor cell populations offer potential for being explored as target for therapeutic intervention.
منابع مشابه
SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer.
Some cancers evade targeted therapies through a mechanism known as lineage plasticity, whereby tumor cells acquire phenotypic characteristics of a cell lineage whose survival no longer depends on the drug target. We use in vitro and in vivo human prostate cancer models to show that these tumors can develop resistance to the antiandrogen drug enzalutamide by a phenotypic shift from androgen rece...
متن کاملReversible Adaptive Plasticity: A Mechanism for Neuroblastoma Cell Heterogeneity and Chemo-Resistance
We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD) or sphere forming, anchorage independent (AI) growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on ...
متن کاملFunction of Tumor Suppressors in Resistance to Antiandrogen Therapy and Luminal Epithelial Plasticity of Aggressive Variant Neuroendocrine Prostate Cancers
Combined loss of tumor suppressors (TSPs), PTEN, TP53, and RB1, is highly associated with small cell carcinoma of prostate phenotype. Recent genomic studies of human tumors as well as analyses in mouse genetic models have revealed a unique role for these TSPs in dictating epithelial lineage plasticity-a phenomenon that plays a critical role in the development of aggressive variant prostate canc...
متن کاملCancer Stem Cell Plasticity Drives Therapeutic Resistance
The connection between epithelial-mesenchymal (E-M) plasticity and cancer stem cell (CSC) properties has been paradigm-shifting, linking tumor cell invasion and metastasis with therapeutic recurrence. However, despite their importance, the molecular pathways involved in generating invasive, metastatic, and therapy-resistant CSCs remain poorly understood. The enrichment of cells with a mesenchym...
متن کاملMicroenvironment-derived factors driving metastatic plasticity in melanoma
Cellular plasticity is a state in which cancer cells exist along a reversible phenotypic spectrum, and underlies key traits such as drug resistance and metastasis. Melanoma plasticity is linked to phenotype switching, where the microenvironment induces switches between invasive/MITFLO versus proliferative/MITFHI states. Since MITF also induces pigmentation, we hypothesize that macrometastatic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 74 21 شماره
صفحات -
تاریخ انتشار 2014